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A transfer matrix method for treating self-avoiding walks on a lattice is developed. 
Single walks confined to infinitely long strips, cylinders, or tubes are considered, 
particularly in the limit where the length of  the walk becomes infinite compared to 
the transverse dimensions. In this case relevant distributions are demonstrated to 
be asymptotically Gaussian.  Explicit numerical results are given for a few of  the 
narrower systems. Similar results for self-avoiding cycles are indicated, too. 
Finally, the behavior of  the various distributions as a function of  strip width is 
discussed. 
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1. I N T R O D U C T I O N  

Self-avoiding walks on various lattices have been extensively employed as 
models for chain polymers. Here we develop a formally exact transfer matrix 
technique for treating such self-avoiding walks. The technique is applied here 
to pseudo-one-dimensional systems, including strips, cylinders, and tubes, 
such as have already become a topic of interest in the recent literature31~*)'3 
As pointed out in this previous work, these or related model systems are of  
interest in connection with thin polymer films or fibers, with polymers 
confined to capillaries or pores, with the stabilization of  colloids, and perhaps 
even with the solubilities of biopolymers in lipid bilayers. 

Attention is here directed toward the asymptotic behavior of the number 
of  walks with a given (horizontal) end-to-end separation x and with a given 
number of  steps l. Two different asymptotically Gaussian distributions are 
found, depending on whether x or l is held constant while the other is varied. 
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Formulas for parameters and moments  of  these distributions are given in 
terms of eigenvalues, eigenvectors, etc., of  a " t rans fe r"  matrix. Indeed, the 
technique is similar in some respects to earlier ~6)'4 applications of  transfer 
matrices in other contexts. Numerical results are given for a number of  simpler 
cases, extending earlier exact results by Wall e t  al. ~t) 

To accomplish these results we consider in Sections 2-5 a rather special 
subclass of  self-avoiding walks (in pseudo-one-dimensional systems). In 
Section 7 it is shown how to deal with the complete class of  self-avoiding 
walks, and in addition it is argued that the asymptotic results are the same for 
the subclass and the complete class. Section 3 deals with the distribution for 
varying the walk length l while holding the end-to-end separation x constant. 
Section 4 then utilizes some of these results and techniques to obtain the 
(perhaps more physically relevant) distribution for varying x at constant I. 
Numerical results are given in Section 5. Section 6 points out how a parallel 
development allows one to treat self-avoiding cycles in these pseudo-one- 
dimensional systems, and some numerical results are given. In treating the 
complete class of  self-avoiding walks in Section 7, results from all the 
preceding sections are utilized; in particular from the numerical results of  
Sections 5 and 6 it is shown that the numerical results of  Section 5 also describe 
the asymptotic behavior of  the complete class of self-avoiding walks. Section 8 
considers evidence and arguments concerning the dependence of the various 
distributions on strip width. The appendices present some auxiliary material 
and relevant theorems. 

�9 Finally, we note that the present technique is of  somewhat wider 
applicability than that pursued here. Different weights (or energies and 
Boltzmann factors) may be assigned to different chain conformations, by 
making simple modifications of  the transfer matrices. Also, the transfer 
matrices may be utilized for the exact enumeration of shorter walks. Further, 
the same techniques apply even when more than one chain is present. Possibly 
even the transfer matrix for a full two-dimensional lattice can be utilized to 
yield some exact properties for self-avoiding walks in this case. 

2. TRANSFER M A T R I X  A N D  GENERATING FUNCTION 
FOR C H A I N S  WITH FIXED ENDS 

First we consider the problem for self-avoiding walks with the ends fixed 
in horizontal positions at the left and right extremes of the walk. In Section 7 
we shall return to the more general problem with free ends, which may be 

4 Transfer matrices arise in the popular rotational-isomeric model of polymer chains and are 
described by Flory. ~Ta) This model involves so-called "second-order" walks, but transfer 
matrices for higher-order walks have also been studied, for instance, in Refs. 7b-Th. Transfer 
matrix ideas are also extensively used in the theory of Markov processes, as discussed by 
probability theorists, whence the transfer matrix is often termed a transition matrix. 
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L_ 1 . I  1 [ 

I 2 3 4 5 6 7 

I -ff 4 4 4 3 2 4 3 

COLUMN "1 

NUMBER ~ 8 9 I0 II 12 13 14 
i 

J 

3 m(~,~) 1 3 3 3 4 3 

Fig. 1. An example of a self-avoiding walk of length l = 44 and horizontal span x = 14 on a 
strip of width D = 4. The columns are numbered and the associated column states indicated. 
Also, the number of steps needed in going from a column state ~ to the following column state 

are given. 

t rea ted  by  an extension o f  the me thod  for  chains  with fixed ends. F o r  
explici tness and  s implici ty  o f  p resen ta t ion  we ini t ia l ly  restr ict  a t ten t ion  to a 
ho r i zon ta l  s t r ip,  say o f  width D, f rom a square  p l ana r  lattice. N o w  a 
pa r t i cu la r  se l f -avoiding walk on this s tr ip will be des igna ted  by  a sequence bf 
column states, the ith co lumn state being associa ted  with the ith co lumn of  
hor izon ta l  lat t ice l inks t h rough  which the walk passes.  Such a co lumn state is 
specified by  (a) a des igna t ion  o f  which lat t ice l inks the walk  passes over,  and  
(b) a des igna t ion  o f  which pai rs  o f  so-occupied  lat t ice l inks are connected  
toge ther  by  a sequence o f  steps in the walk,  all loca ted  to the left o f  co lumn i. 

An example  o f  a se l f -avoiding walk and  its des igna t ion  via co lumn states is 
i l lus t ra ted in Fig. 1. Because o f  the f ixed-end feature  o f  the se l f -avoiding 
walks,  each co lumn state  mus t  have exact ly  one lat t ice l ink occupied by the 
walk,  yet  pa i r ed  to no  o ther ;  also,  this dangl ing  end mus t  no t  occur  between 
two occupied  and  connec ted  lat t ice links. Fur the r ,  we see tha t  a sequence o f  
such co lumn states uniquely  de termines  a se l f -avoiding walk.  F o r  the 3 x oo 
strip,  there  are  jus t  five (present ly  a l lowable)  co lumn states required for  the 

Fig. 2. The five column states arising on a strip of width D = 3. The states c~,/~ are obtained 
from c~, fl via a reflection about the center of the column. 
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designation o f  any self-avoiding walk (with fixed ends). These five states, 
denoted ~,/~, 7, ~, and if, are illustrated in Fig. 2. The number  o f  column states 
for general strip widths is given in Appendix A. 

Generally now, for a given ith column state, only certain ones can follow 
in the (i + 1)th column. For  example, 

~--~ ~,/~, 7, & 

7---> 7, 7, &, 3 • ~ strip (2.1) 

Further,  each such t ransformat ion may  involve a different number  o f  steps in 
the walk. This we may  keep track o f  by introducing a d u m m y  parameter  t 
raised to a power m(4, ~) taken to be the 5 number  o f  steps required in a 
transfer f rom state ~ for column i to a state 4 for co lumn i + 1. More  precisely, 
m(4, ~) is the number  o f  steps in the walk between the centers o f  columns i and 
i + 1 when they are in states ~ and 4, respectively. Then we define 

m(~,O ~ 0 

n~(i + 1; t) = ~ tm~'~)n;(i; t) (2.2) 

Thus, with the choice 
n~(1 ; t) -= t "C~'~ (2.3) 

where m(~, 0) is the number  o f  steps required to initiate a walk with the first 
co lumn in state ~, we see that  n~(x; 1) is the total number  o f  x-column walks 
with the xth and last co lumn in state ~. N o w  letting n(i + 1 ; t) denote the 
column vector with Cth componen t  n~(i + 1; t )  and letting T, denote the 
tramfer matrix with (4, ~)th element t "(r176 or  0, depending upon  whether 4 can 
or  cannot  directly follow ~, we see that  (2.2) becomes 

n(i + 1; t) = T,n(i; t) (2.4) 
For  example,  0,2,3 :/ 

t 3 t 3 0 0 03 1 
! 

T t = 12 0 t t 2 , 3 x ~ strip (2.5) 

t 3 t 2 t 

0 0 t 3 t3,] 

and rather generally we have a familiar (6'7) type o f  transfer matrix problem. 

s For a horizontal strip on a square planar lattice there is no more than one way to go from a given 
column state in column i to a second given state in column i + l. This is not necessarily true with 
cylinders or tubes, and in place of t "r in (2.2) one then has L tm/~'r where m~(~, r is the 
number of steps in the ath way for going from ~ to 4. 



Asymptotic Distributions for Self-Avoiding Walks 565 

We have 

n( i  + 1 ; t) = Yt~n(1 ; t) 

and it becomes of interest to introduce the 9eneratin9 function 

(2.6) 

Gx(t ) =_ ~ rTx- Ii ,,~o,~)+~(r (2.7) 

where m(0, ~) is the number of steps to immediately terminate a chain with the 
last column state being ~. Clearly G~(1) is just the total number of chains with 
x - 1 columns (and a span of  x). Hence, 

G~(t) = ~ n(x, l)t z (2.8) 
l 

where n(x, l) is the number of x - ! column chains with length l. Then 
moments of  chain length I at a fixed end-to-end separation x may be obtained 
via differentiation 

1 E n ( x , l ) = [  1 OG~(t)~ 
G~(1) ~ G~(t) at J,:l  

Gx(l)l [G~(t)l Ot~3G~(t) 7 ~ _ ~  _]~=1 (2.9) - =  = 

Further, the matrix elements of T~ x may, with some computational advantage, 
be exactly expanded in terms ofeigenvectors and eigenvalues ofT,, whence all 
the x dependence appears as xth powers of eigenvalues (or possibly Jordan 
blocks). 

3. A S Y M P T O T I C S  FOR FIXED E N D - T O - E N D  SEPARATION 

In the asymptotic limit as the end-to-end separation x (and also the length 
l) approaches infinity, the eigenvalue of maximum magnitude dominates. 
Physically we expect (at t = 1) the corresponding eigenvector to necessarily 
have all components of like phase (whence it is nondegenerate) and the 
eigenvalue positive; mathematically this is guaranteed for t > 0 by the 
Frobenius-Perron theorem (e.g., Ref. 8). Thus, 

G~(t) ~ at2 ~- 1, X ~ O0 (3.1) 

where 2 t is the maximum eigenvalue and a, is a proportionality constant. It is 
given as 

a, =- ~ t "(~176 +"~'~ (3.2) 
~,r 
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where i f ( t )  and  v(t) are the left and  r ight  e igenvectors  to I t with a 
no rma l i za t ion  such that  

u~*(t)v~(t) = 1 (3.3) 

N o w  m o m e n t s  o f  (2.9) can be expressed in terms o f  der ivat ives  o f  2~ (and at) at  
t = 1, and  these can in turn  be eva lua ted  via pe r t u rba t i on  theory  in terms o f  
the u(t), v(t), and  derivat ives  o f  T t at  t = 1. However ,  we take  a different  
approach ,  which yields a comple te  6 a sympto t i ca l ly  accura te  funct ional  form 
for n(x, 1). 

Let nr l) be the number  o f  x co lumn walks o f  length l with the last  
co lumn being in state ~,, and  let E be the t r ans la t ion  o p e r a t o r  for chain  length 

E = e x p ( - # / ~ l )  

Then in ana logy  to (2.2)-(2.4) we have 

m(~,~) ~ 0 

n, (x  + 1, l ) =  Y, n~[x, l - m(~, ~)] = 

nr l) = 6Z,m(,,O ) 

n(x + 1,/) = Ten(x, l) 

(3.4) 

m(~,g) e 0 
Em(~'On;(x, t) 

(3.5) 

Fur the r ,  for the a sympto t i c  behavior ,  in ana logy  to (3.1), the number  o f  x 
co lumn chains  o f  length l is given by 

n(x,  l) ~ 22- la(l), x -~ o0 (3.6) 

where 2 e is the e igenopera to r  7 co r r e spond ing  to 2 t and  

a(l) =- y,  Em(~176162 31,,,~,o ~ (3.7) 
~,~ 

6 The solution is asymptotically complete in that the distribution we find correctly gives the 
leading nonvanishing terms in powers of  x (and in the next section in powers of  l). Moreover, 
there are several approaches to obtain the results of  this section. One approach is given in Refs. 9 
and 10, al though the parameters (# and A) of  the asymptotic distribution are there characterized 
in a rather different way. 

Another  approach suggested by the referee is to consider the Fourier transform i (x ;  0) of  
n(x, 1) and use (3.6) to obtain 

foo i (x ;  0) ~ elt~ dl = 21,0 ld(O) 

The 2~,; 1 may be expanded, much as in (3.14), to give a Gaussian distribution for i (x ;  0) and 
this Fourier-transformed back to give our result for n(x, l). Alternatively, the formula for 
if(x; 0) above may be recognized to be like that for x - 1 independent random variables, so that 
the usual central limit theorem can be applied. It is to be noted, however, that  the present 
variables [say the m(~, 4)] are not independent, and are, for instance, termed chain-dependent by 
Gnedenko."  1) 

7 Clearly if At and Bt are matrices with elements which are polynomials in t and A~B~ = C,, then 
AeBE = C~. Hence if v~ and 2~ are functions of t such that T,v~ = 2#, then also TEVE = 2Eve. 
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Next,  in order  to utilize (3.6), we expand Y e and 2 e in terms of  the 
differentiation operator ,  

T E = V 1 + T ? ) ( - e / O 0  + T i 2 ) ( - g / a 0  2 + ... 
(3.8) 

2E = 21 + 2(,')(-0/c~1) + 2 f ) ( - ~ / ~ l )  2 + "" 

Then 

[ T ( I ~ I  _ 1 - ,  "j~r = m(~, ~)t m(~z), [T~2)]~ - ~-{m(~, ~)}2tm(r (3.9) 

and via per turbat ion  theory for non-Hermit ian  operators  ('2) 

( 1 T(l))u(l) (3.10) 2~u = v,(1)T~l)u(1), ;?2) = v+(1) i f )  + T~)).11 - T,  

Thus, a power  of  2 E as appears in (3.6) may  be written 

2e~ = 2 1(1 2(1 u~? 2(12) c? 2 )~ 
21 el + ~ 8l 2 +' '"  (3.11) 

Now for large x the chain lengths l are large, too, so that  we might more  
appropr ia te ly  consider j = l /x as being finite while x ~ oo. Then 

X "~1 ~?J + x2 21 6~J 2 + . . . .  exp 21 ~ x--+ 

(3.12) 

so that  on a scale of  lengths l comparable  to x, the initial delta-function 
distribution asymptotical ly is just translated (a distance ~ xZ(ll)/2a) and grown 
in size (by a factor  ~2ix) .  Hence 

( l ) x  ~ (, '~(ll)/ .~I)X, X - - ,  ~ (3.13) 

and the higher (noncentral)  moments  are simple powers of  (1)~, at least on a 
scale o f  lengths comparable  to x. 

Next,  to look at the distribution in somewhat  finer detail, we use (3.11) to 
write 

1 1 _r +. . .  
)~E x = )'1 exp -~-1 x ~  exp ~ 2, 8t 21 812 

--=21 e x p ~ - / ~ x ~ )  l + ~ A ~ + " ' j  (3.14) 

where the remaining terms in the curly brackets are third or higher degree in 
the differentiation operator ,  and 

/~ -= 211)/21, A - 221z)/21 - (21')/2,) 2 (3.15) 
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Now considering values of l deviating from the average (l)x by amounts 

finitely proportional to x/%-, we restrict k =- (1 - ( l ) x ) / x f x  to be finite as x 
- ,  oe. Then 

2~ ~ 21 ~ e x p ( - # x  O/3l) exp(�89 0 2 / 0 k 2 ) ,  x ~ ~ (3.16) 

and 

n(x, l) = a12~- l[exp(-/~x ~/Ol) exp(�89 02/012)]6l,o, x -~ ~o (3.17) 

where we have replaced a~(l) by a16z,o, as is allowable for asymptotic results 
since ae(l) is just a linear combination of al delta functions all located within a 
few steps of 1 = 0. Next, as is well known, (~ 3~ [exp(�89 02/~12)]f(l) is just the 
solution F(x, l) to the diffusion equation 

c~ A ~2 
Ux F(x, 1) = ~- ~ F(x, l) (3.18) 

with the initial x = 0 value F(O, l) = f ( l ) ,  and i f f ( l )  is a delta function, this 
solution is well known to be a Gaussian. Thus 

al x -X7~1 I (I-2xA(l)x)27 n(x,  l) ~ ~1(2gA)1 /2  ~1 x expt_ ] '  x--,  oo (3.19) 

a distribution which Will give the higher central moments ( ( l -  (l)x)m)~, 
asymptotically correct, on a scale of lengths comparable to x ~/2. 

4. A S Y M P T O T I C S  FOR FIXED LENGTH 8 

The distribution of (3.18) does not give asymptotically correct moments 

( x " ) l  = ~ xmn(x, l ) /~  n(x, l) (4.1) 
X X 

for end-to-end separations of chains with fixed length l, because the Gaussian 
of (3.18) is severely in error in its extreme tails. Although these extreme tails, 

where ( l -  (1)~)/x/x--~ 0o as x ~ o% do not contribute to the asymptotic 
(lm)x moments, they do contribute significantly to the (x ' )~ moments 
because of the weight factors 21 x, which are very large and rapidly varying 
in these extreme tails. Hence we seek a "connective constant" ~c for these 
self-avoiding walks so that the remaining portion of the distribution will be 

s The referee points out the results of  this section can also be obtained in another  way, by 
considering the discrete Fourier t ransform 

n((0; l) ~- ~ n(x; l)e i'e~ 
x 

On showing that this behaves asymptotically as (1 It J ,  where 2, = e -  i% and then proceeding as 
m the referee's suggestion for Section 3, one can obtain the results of  Secnon 4, 
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more nearly normalized. Now tr is such that tin(x, l) diverges to + oo or 
converges to 0, (14) both with exponential rates, for t > 1/~ or t < l/K, 
respectively. In turn this implies that the generating function of (2.7) behaves 
as 

0, t < 1/~c Gx(t ) ~ x -* oo (4.2) 
Go, t>  l/tc 

Hence, using the asymptotic formula of (3.1), we see that 

~c = 1 / t  ,~, = 1 (4 .3 )  

and ~c is determined simply by varying t in Tt till its maximum eigenvalue is 1. 
It is of use to understand some features of  how 2t varies with t. The 

Frobenius-Perron theorem (s) applies to T, for all t > 0, so that 2, > 0 and all 
the components of  the left and right eigenvectors for 2, may be chosen to be 
positive. Then, also noting that all the elements of TI 1) are nonnegative for 
t > 0, we have 

02,/~t = vf(t)T~l)u(t)/> 0, t > 0 (4.4) 

Thus, as t decreases from 1 to 0, the maximum eigenvalue 2, decreases 
monotonically from 21 > 1 to 2o = 0, and there is exactly one value of  t 
between 0 and 1 for which 2, = 1. Hence, t = 1/K is the minimum positive 
value of t for which the determinant of T, - I is 0. 

Now write 

n(x, l) ~ ~Jp(x, l), nr l) = tctp~(x, l) (4.5) 

with p(x, l) and p,(x, l) at large x being normalized as nearly as is possible 
by such a simple factor. Then in analogy to Eq. (3.5) we have 

rn(r ,~ 0 

p~(x + 5, t) = Z {F#~}m(~'~p~(x,/) 

pg(1, l) = ~ l ~ ( ~ ' ~ ) 6 / , m ( ~ ] o ) (4.6) 

p(x + 1, l) = TE/Kp(x, l) 

In fact, the same type of  asymptotic analysis as that of the previous section 
applies, so that 

0 
P(x, l) ~ al/,, exp(-l~,,x ~-~)exp(~ A,,x ~2)~l,o 

(2gAb)l/2 xa/2 exp 2xA~ [ x, l--* oo (4.7) 

which we expect to be valid for values deviating from the average (x ) t  by 
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amounts  finitely propor t ional  to x/] .  [Here #~ and A n are defined much as 
/~ and A were in (3.15), except that  A t and its per turbat ion coefficients are 
evaluated at t = 1/x now instead of  at t = 1.] Next, substituting x = (x)z + 
(x - (x) l )  and restricting (x - ( x ) l ) / l -~  0 as l ~  oe, we find 

n(x, l) = al/~ 1 (2nA~)~/2 (x)] ./2 
{ [(,- ,,(x>,) + ~,(x- (x>,)]'} 

x exp 2 (x ) tA  ~ , l -+  oo (4.8) 

so that  

Then, defining 

(x)~ = ~#~ (4.9) 

[~ ]2 ~(2) 1 )'I/K AK 9 \"l/rc] "1/~ ~+I/K v ~ - , F -~ - -  - _ - l ~  (4.10) 

we finally obtain 

val/~ 1 r (x _ <x),):] n(x~ l) (2rcF)l/2 11/2 exp_ 2~-  -_], l---, oe (4.11) 

This then determines the central moments  

O, m odd 

( ( x - - ( x ) t ) m ) t  = m! [FI'~ ''/2, l---~oo (4.12) 
(m/2)! ~ 2 - )  m even 

asymptotical ly correct. 

5. S O M E  N U M E R I C A L  RESULTS 

The transfer matrix for the strip o f  width M = 3 has already been given 
in (2.5). But this 5 x 5 matrix may  be block-diagonalized if we take into 
account  the reflection symmetry  th rough  the horizontal  line down the center 
of  the strip. Indeed t ransformat ion  to a basis composed  f rom plus and minus, 
4 + and ~- ,  combinat ions  o f  reflection-related pairs, ~ and ~, yields 

I 
t + t 3 t 3 t 2 ] 

t 3 •3 0 0 

"1" t = 2t 2 0 t 

t -- t 3 -- t 3 

0 t3 t3 

3 x oo strip (5.1) 
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Here we have o rde red  the basis as e+,/~+, 7, c~-,/3- so tha t  the first 3 x 3 b lock  
co r re sponds  to the symmet r ic  par t ,  while the second 2 x 2 par t  co r responds  

to the an t i symmet r i c  par t .  Since the max imum-e igenva lue  e igenvector  on the 
or iginal  basis was to have all componen t s  o f  l ike phase,  this e igenvector  mus t  
be symmet r ic  and  we m a y  delete the an t i symmet r i c  b lock  ofT,  f rom cons idera-  
t ion.  The  secular  po lynomia l  for  the symmetr ic  b lock  is 

det(T, - 2 t l )  = --2t  3 q- (2t + 2 /3) )~ t  2 - (t ~ + t4)2, + (t 5 - 2t 7) (5.2) 

(3 x oo str ip) 

whence sett ing t = 1 and  solving for  the m a x i m u m  roo t  gives 21, while sett ing 
2 t = 1 and  solving for the m i n i m u m  posi t ive roo t  gives t = 1/x. To find 2] 1) 
and  2] 2) one can now use (3.10); or  a l te rna t ive ly  the secular  po lynomia l  o f  
(5.2) can s imply  be dif ferent ia ted,  the result  set equal  to 0, and  the 2 der ivat ives  
solved for. Hence 

3+ i5 
2 1 -  2 

2(1) = 8 2 1 2  - -  621 - 9 _ 1821 - 1 _ 17 + 7 x / i 3  

3)~12 - -  8 2 1  q- 2 21 + 5 6 

)~ 1 / 2  (~2~t ~ ')~t~ 428021 -- 719 

Numer ica l  values for the pa rame te r s  charac te r iz ing  the d is t r ibu t ions  o f  
Sections 3 and 4 are given for  the 3 x oo str ip in Table  I. Resul ts  for  several 
o ther  p seudo-one -d imens iona l  systems are also r epor t ed  there. The values o f  
~r and  v for  the 2 x oo and  3 x oo str ips agree with those prev ious ly  given by 
Wal l  e t  al. m 

(3 x oo strip) (5.3) 

Table I. Parameters Characterizing Distributions of 
Self-Avoiding Walks 

System 21 # A tr v F 

2 • ~ strip 2.0000 1.5000 0.2500 1.6180 0 .7236 0.0894 
3 • ~ strip 3.3028 2.1315 1.0363 1.9146 0 .6244  0.1388 
4 • oo strip 5.4826 2.9650 1.6317 2.0873 0.5661 0.1785 
5 x oo strip 9.4103 3.818 1.703 2.1990 0.526 0.213 
6 • ~ strip 16.355 4.622 1.793 2.276 0.495 0.246 
2 • oo diagonal strip 3.3830 1.6953 0 . 2 3 7 6  2 . 1 2 6 5  0 .6466 0.0405 
2 • oo strip from a 

triangular lattice 3.3830 1.6344 0 . 2 9 9 3  2 . 2 0 5 6  0.6911 0.0761 
4 cylinder • O(D 

9.4956 3.1424 1.0698 2 . 4 0 9 0  0 .5090 0.1510 
2 x2  x ootubeJ 
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a B u 8 ~ 

Fig. 3. Six of the column states for a strip of width D = 4. In addition there are six states 
obtained via reflection about the center of the column. 

In  the r e m a i n d e r  o f  this  sect ion we ind ica te  how the s y m m e t r y - r e d u c e d  
t rans fe r  mat r i ces  for the  o the r  systems o f  T a b l e  I are  set up.  F o r  the 2 x oo 

a n d  4 x oo str ips the  p r o c e d u r e  is qu i te  s imi lar  to tha t  a l r eady  car r ied  ou t  for 
the 3 x oo s t r ip ;  one  o b t a i n s  

"rt = t2 + t, 

t +  t 4 

t 2 -t- t 3 

t 3 
- i- t= 

t 4 

t 3 

t 4 

2 x oo str ip 

t2 ..~ f3 f4 t3 t4  t 3- 

t + t 2 0 0 t 3 t 4 

t 4 t 3 t 4 0 14 

t 3 t 4 t 3 0 0 

0 0 0 t 3 t 4 

0 t 4 0 14 t 3 

4 x oo str ip (5.4) 

where  the states for  the 4 x oo str ip are i nd i ca t ed  in  Fig.  3. The  4 x oo cy l inder  

m a y  also be t e rmed  a 4 x oo str ip wi th  cyclic b o u n d a r y  c o n d i t i o n s  (in the 

t r ansve r se  d i rec t ion) ,  a n d  as such is l abe led  by  the  same  states as for  the  4 x oo 

str ip,  a l t h o u g h  there  are n o w  ju s t  three  s y m m e t r y - n o n e q u i v a l e n t  s tates (say c~, 

/~ I 

(c) 
Fig. 4. Three views of a 2 x oo diagonal strip. 
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T+I  
Fig. 5. The four column states associated with the 2 • oo diagonal strip (of Fig. 4c). 

~, and ( o f  Fig. 3). The resulting symmetry-reduced transfer matrix is found 
to be 

I 
t + 2t 2 + 2t 3 + 2t 4 t 3 + t 4 + t s 2t 31 

/ 

~t ----- 2t 3 + 2t 4 t 3 + t 4 2t41, 4 x oo cylinder (5:5) 

t 4 t 4 13 ..1 

where we note  that  the same state m a y  arise f rom a given predecessor in 
several ways. Of  course the 2 • 2 • oo tube is the same as the 4 • oo cylinder. 

The 2 • oo diagonal  strip is a section f rom a square planar  lattice as 
indicated in Fig. 4a. We, however,  distort it so as to appear  as in Fig. 4b. Then 
we may  delete the " i so la ted"  sites o f  valence two, as in Fig. 4c, if we remember  
to count  a single horizontal  step with a weight factor  o f  t ,/2 -~ r 4 instead o f  
z 2 as for  the diagonal  and vertical steps. (Here we take the x axis along the 
diagonal  direction o f  Fig. 4a.) The four  states for the system are given in 
Fig. 5, and the resulting transfer matrix is 

6 

T, = r z 4 0 J '  2 x oo diagonal  strip (5.6) 

,17 6 27 7 

For  a 2 x oo strip f rom a tr iangular lattice the si tuation is fairly similar, except 
that  now a horizontal  step has just weight t, and 

i t2 t 2 t 2 
= 2 x oo strip o f  a t r iangular  lattice (5.7) Tt t 2 t t ' 

0 t 2 t 2 

Clearly, the present transfer matrix technique applies to a wide variety o f  
pseudo-one-dimensional  systems. 

6. S E L F - A V O I D I N G  CYCLES 

Self-avoiding cyclic paths on strips, tubes, and cylinders may  be treated in 
a similar manner .  Co lumn states can be identified much  as was done for walks 
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Fig. 6. The three column states for self-avoiding cycles on a strip of  width D = 3. 

in Section 2, so that, for example, the 3 x oc strip gives rise to the three 
column states depicted in Fig. 6. Here there is no dangling end. Further, we 
may similarly construct a transfer matrix Y/, an example of which is 

T / =  t 2 t 3 , 3 x oo strip (6.1) 

t 2 t= 

In analogy to Eq. (2.7), the generating function for self-avoiding cycles, with a 
left-to-right span of x, is 

Gx'(t ) = ~ ITS-1]~t"~~162176 (6.2) 
~,~ 

where now m'(0, 4) is the number of steps to immediately terminate a cycle 
with the last column state being 4. Then 

Gx'(t) = ~ n'(x, l)t l (6.3) 
l 

where n'(x, l) is the number of length-/cycles with a span of x. Arguments 
parallel to those of Sections 3 and 4 still apply, and finally give asymptotic 
expressions 

n'(x, l) ~ & '(2~A') 1/2a1' x~1 [ (1 ~21 v<t>~)2 7_ (21') ~ exp - / '  x ---, cc 
(6.4) 

a',,~,v' 2 [ (x - < x ) , ) 2 l  ' 
n'(x, l) - (2rcF,)l/2 1112 exp 2/F' J l -~ c~ 

in analogy to Eqs. (3.19) and (4.11), respectively. Here 

( x ) ,  = la' x, ( x ) l  = v'l (6.5) 

and/~', A', v', F' are defined analogously to #, A, v, F of  Eqs. (3.15) and (4.10) 
but now 'in terms of the eigenvalues 21', 2~/~., and their perturbation 
expansion coefficients. 

Treatment of the transfer matrices T,' can be done much as in Section 5 
for the T,. Numerical results for some of the narrower systems are given in 
Table II. The cases for the three types of diagonal strips of Table I are omitted 
from the present table, since their present transfer matrices are trivial, being 
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Table I1. Parameters Characterizing Distributions of 
Self-Avoiding Cycles 

System 2 /  #' A' ~c' v' F' 

3 • bo strip 2.4142 2.5858 0.2419 1.4142 0.4000 0.0160 
4 • ov strip 4.7535 3.1663 0.6763 1.6818 0,3520 0.0246 
5 x ov strip 8.5972 3.8487 1.3064 1.8631 0,3218 0.0318 
6 x oo strip 15.1712 4.617 1.800 1.9924 0,300 0.038 
4 cylinder • OO 

6.5877 3.3063 0.5786 1.8268 0.3388 0.0224 
2 x 2  • ov tubeJ  

essentially 1 x 1 with a single power of t. Although Hammersly (15) has shown 
that the connective constants for walks and cycles on extended square planar 
or cubic lattices are the same, his proof  does not apply for walks and cycles on 
strips, cylinders, or tubes. Indeed, on comparing Tables I and II, we see that 

•' < x (6.6) 

Further noting that 2, and 2/decrease monotonically as t decreases, we infer 
that 

2z' < 2,  for 1/re ~< t ~< 1/to' (6.7) 

an observation of use in the following section. 

7. C H A I N S  WITH FREE ENDS 

In this section we consider self-avoiding walks with free ends, not neces- 
sarily located at the left and right extremes of the walk. We identify three 
regions: first, the region extending from the left extreme walk boundary to 
the leftmost end of the walk; second, the region extending from the leftmost 
end to the rightmost end; and third, the region extending from the rightmost 
end to the right extreme walk boundary. We let the horizontal widths of these 
regions be xl, • and xilio Thus the chains of Sections 2--5 have x I • 0 ,  

xn~ = 0. Now column states can be identified in region I without a dangling 
end off to the left just as for the column states of Section 6. Further, the 
transfer matrix Tt I for region I is exactly the same as that for the cyclic case 
of Section 6. 

For region II there are some additional column states which could not 
arise for the fixed-end situation previously considered. These additional 
column states have the dangling end between a pair of  occupied links which 
are connected, a case of  which is illustrated in Fig. 7. Again we may construct 
a region II transfer matrix, which generally takes the block form 

(7,) 
S~ 
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Fig. 7. The additional (region II) column state which arises on a strip of width D = 3 when 
the walk is allowed to have free ends rather than fixed. 

Here T t is as in Section 2 and a zero matrix occurs in the lower left block 
because none of the additional region II states can follow those already 
considered in Section 2. Here 

R Ji) and Sz = (t3),  3 x oo strip (7.2) 

•t3/2 t3/2 

0 

t3/2 
Cii,i _~ 

t t5/2 

t5/2 

0 

" t3/2 

~t('~-lll'II ~ t3/2 

.ts/2 

t5/2 

0 t 5/2 

2t5/2 g3/2 

t3/2 t3/2 

0 0 

t 5/2 0 

t3/2 t3/2 

t3/2 2t5/2 

0 t 3/2 

t 5/2 0 ts~ 2 ] 

t3/2 t3/2 

t3/2 t3/2 t5/2J 

3 x oo strip (7.4) 

as an example. 
For region III we choose to specify a column state in terms of whether 

a pair of occupied links are connected by a sequence of states to the right of 
the column under consideration. Then the possible column states for region 
III are in one-to-one correspondence with those of region I, the corre- 
spondence being effected by a reflection in the vertical plane of the column. 
Then the transfer matrix for region III, 

YI" = ~ '  (7.3) 

is the transpose of that for region I. 
In addition to these transfer matrices applying within each region, there 

are also connection (or interregion transfer) matrices between pairs of regions. 
The manner of their construction is similar to that of the intraregion transfer 
matrices, though the connection matrices are in general rectangular rather 
than square. For  example, 
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Connection matrices (or vectors) are needed for going from the empty region 
(region 0) preceding I to region I or for going from region III  to the empty 
region following Final ly  should x I Xn or x m be 0 connection matrices 
between otherwise nonadjacent regions are required All are constructed in a 
similar m a n n e r  and examples for c TM and r - t  vt are given in Section 2 (for the 
special case that the initial and final steps of  the walk are horizontal)  

Once all the transfer and connection matrices are avai lable  the g e n e r a  
ting function for walks with widths x~ x n x m for the various regions is given 
a s  

~ . .0 ,1 I I /TI I l~x l l l  -- 1 ~..III,ll[Tllixii - 1 ( ~ I I , I / T  1 ~xi - 1 (~ I ,0  
"~X . . . . . . .  I l l ( t )  ~ ~ t  "~--! ] - - t  \ - - t  ] v ,  \ - - t  ] ~ '  ' X I X I ] X I I I  ~ 0 

( ' O , I I l / T l l l ] x l l l  -- 1 (~llI ,11/Tll"~xn - 1 (~II ,0  
~ t  k--t  ] ~ t  ' ,--t  ] ~ t  , X 1 : 0 ,  XIIXII  1 ~ 0 

C 0 , 1 1 I ( T I I I ) x n l  - 1 C I I t , I ( T  l ) x l  - 1 C I I , 0  ~ 0 ,  5; & 0 
~ t  \ - - t  ,," ~ t  \ - - t  : ~ t  , XII XIXII  

0,II  11 Xn - 1 (~ . I I , I (T  l ) x l  - 1 ~ . l , 0  = 0 ,  .~ IXII I  =1~ 0 
C ,  ( T , )  - t  . , - t  : - t  , X i i l  

( . ~O , l i l [T i l l ] x  m - 1 (.~lll,O ~ 0 
~ ,  \ - - t  ) ~ t  ' XI ~ XII  

~..O,ll(TII)xll - 1 ~11 ,0  : 0 
~ t  ",--t : ~ t  , X1 : XIII  

C O , i ( T t , ) x , -  1 C t , , o ,  Xll = Xll I = 0 ( 7 . 5 )  

The total generating function for walks with a total span of x is 

x--tl 

r ~ E ~a,b,x-a-b(t)  ( 7 . 6 )  
a = O  b = O  

Now ~x(t) can in principle be manipulated much as Gx(t ) of  Section 2 might 
be, so as to yield exact moments  and enumera t ions  

For asymptotic results the same type of arguments as given in Section 3 
a p p l y  and 

a+b+c=x 
,~x(t) ~ A, ~ (2,1)a(2~,~)b(2111)c, x--* oo (7.7) 

a.b,c 

where 2t ~, 211, and 2p I are the maximum eigenvalues to Tt l, Tp, and Tp I. Because 
of the blocked form in (7.1), 2p is equal to the maximum eigenvalue 2 t of  
Sections 2-5 (unless the maximum eigenvalue of T l} arises from St). Also, 
because of (6.4),)~I = j~ltll = 2 / .  Now in the case that 2, > 2/, we have 

A~ 
~x(t) .~ (2,) x, x ~ ~ (7.8) 

1 - 2 , ' / 2 ,  

and the evaluation of  distributions proceeds as in Sections 3 and 4, and the 
asymptotic moments  are the' same. The case that 2, < 2,' cannot occur at 
t = 1/~c because this would imply that (x) f f l  ~ 0 as l ~ ~ ,  contrary to what 
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has elsewhere 9 been rigorously proved. The case with )~, = 2,' at t = 1/~c is not 
forbidden by these earlier rigorous results. Nevertheless, it is found that 
2, > 2,' at t = 1/x and t = 1/K'. Hence it seems likely that in general for these 
pseudo-one-dimensional systems the fixed-end and free-end self-avoiding 
walks exhibit the same asymptotic behavior. 

8. V A R I A T I O N S  W I T H  STRIP W I D T H  

The numerical results of  the preceding sections for self-avoiding walks 
and cycles on strips provide evidence as to the behavior of  their distributions 
as a function of strip width D. Thus the dependence on D of  the parameters 
characterizing the various asymptotic distributions is now explicitly noted, 
e.g., by writing ~c(D) and v(D) for ~: and v. 

First, since 21 represents some sort of  an average number  of  ways for a 
very long walk to proceed one unit to the right along a strip, )~I(D) should 
increase rapidly with D. Indeed, as proved in Appendix C, )~I(D) increases 
exponentially with D, and the numerical values of [ln 21(D)]/D appear to 
converge to a value near 0.5. Also it is proved in Appendix C that 
[ln 2;'(D)]/D should converge to the same value as does [In 21(D)]/D, and 
this is observed numerically. Indeed it is argued in Appendix C that 21(D) and 
2 I '(D) should behave rather similarly for larger D, and numerically it appears 
that 

21'(D)/21(D) ~ 1.0 as D--~ ~ (8.1) 

Further, Appendix C establishes that ~c(D) and x'(D) should approach one 
another for larger D, and numerically it appears that 

~c'(D)/x(D) --. 1.00 as D --~ oo (8.2) 

Further, the difference between x'(D) and K(D) seems to fall off as D -~ with q~ 
of the order of  magnitude of 1. 

The scaling arguments of  Daoud and de Gennes (4) predict that for large 
D the compressional free energy (per unit length) is of  the form (2) 

In ~:(oo) -- In ~c(D) ~ clD -4', 4) ~ 4/3 (8.3) 

and that for large D the mean end-to-end separation is of  the form (2'3) 

v(D) ~ c2 D-~ 0,,~ 1/3 (8.4) 

where cl and c2 are proportionality constants. To test these functional forms 

9 The theorem is given in Ref. 16 and a correction to the proof is given in Ref. 17. It should be 
noted that the correction (as it stands) applies only to strips, although intuitively one also 
expects it to apply to cylinders and tubes. 
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D 

Table III. Estimates for Scaling Exponents 

Numerically Extrap- Monte Numerically Extrap- Monte 
exact olation" Carlo b exact olation a Carlo c 

2 0.467 - -  - -  0.988 - -  - -  
3 0.364 - -  - -  1.041 - -  
4 0.341 0.370 0.341 1.091 0.997 1.096 
5 0.329 0.330 0.338 1.128 1.04 1.121 
6 0.334 0.343 0.303 1.15 0.99 1.164 
7 . . . .  0.96 - -  
8 - -  - -  0.32 a - -  - -  1.22 a 

" Data from Ref. 2 (incorporating exact result for D = 3). 
b Data from Ref. 3 (incorporating exact result for D = 3). 
c Data (provided by W. A. Seitz and incorporating the exact result for D = 3) as computed in 

conjunction with Ref. 2, but not reported there. 
a Data calculated using equations as in (8.5) with the arguments D - 1 replaced by D - 2. 

o n e  m a y  ca l cu la t e  the  quan t i t i e s  

ln [ ln  ~c(oo)/tc(D)] - l n [ l n  ~c(oo)/~c(D - 1)] 
~bD = 

l n [ ( D -  1) /D]  
(8.5) 

l n [ v ( D ) / v ( D -  1)] 
0 D =- 

l n [ ( D  - - 1 ) / D J  

fo r  a s equence  o f  va lues  o f  D. Th i s  is d o n e  in T a b l e  I I I ,  where  ~c(oo) is a s s u m e d  

to t a k e  the  s a m e  va lue  as fo r  the  e x t e n d e d  p l ane  a n d  is e s t i m a t e d  (18) as tr = 

2.6385. E s t i m a t e s  f r o m  exac t  f in i t e -cha in  e n u m e r a t i o n s  a n d  f r o m  M o n t e  

C a r l o  s tudies  are  a lso  g iven  in the  table.  As  n o t e d  l~reviously,  (2'3) OD appea r s  

to a p p r o a c h  the  e x p e c t e d  sca l ing  va lue  o f  1/3 ve ry  rap id ly .  T h e  sequence  o f  

va lues  fo r  q5 D c o n v e r g e s  suff ic ient ly  s lowly  tha t  it is u n c l e a r  w h e t h e r  the  va lue  

o f  4/3 expec t ed  f r o m  sca l ing  t h e o r y  will be  a c h i e v e d ;  h o w e v e r ,  the  va lue  o f  

4/3 a p p e a r s  to  be a poss ib i l i ty ,  whi le  the  va lue  o f  1, p r e v i o u s l y  cons ide r ed  (/) 

as poss ib le ,  n o w  a p p e a r s  unl ike ly .  

Sca l ing  a r g u m e n t s  s imi la r  to those  l ead ing  to  Eqs.  (8.3) a n d  (8.4) shou ld  

a lso  a p p l y  to x ' (D)  a n d  v'(D) fo r  cycles.  Since  one  expec t s  the  span  o f  self- 

a v o i d i n g  cycles  in the  e x t e n d e d  p l a n e  to  scale  in the  s a m e  w a y  as the  end - to -  

end  s e p a r a t i o n  fo r  s e l f - avo id ing  walks ,  the  va lues  fo r  the  e x p o n e n t s  ~b' and  

0' a re  expec t ed  to  be the  s a m e  as fo r  ~b and  0. R a t h e r  t h a n  ut i l ize ana logs  o f  

Eqs .  (8.5) to  r e p o r t  e s t ima tes  t~ for  ~b' a n d  0', we s imp ly  n o t e  the  b e h a v i o r  

o f  the  r a t ios  #(D)/~c(D) and  v'(D)/v(D). T h a t  the  d i f fe rence  ~c(D) - ~c'(D) con-  

verges  to ze ro  as D - e  wi th  a va lue  o f  q~ = 4/3 n o t  be ing  exc luded  by the  

lo Such estimates seem to exhibit slower convergence than for the case of self-avoiding walks. 
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numerical data indicates that these data are not inconsistent with the scaling 
value of qS' = 4/3 for the exponent in the compressional free energy. Since 
it appears that 

v'(D)/v(D)---, 0.60 as D ~ oo (8.6) 

from the numerical data, the scaling theory result of 0' = 1/3 is indicated to 
hold. 

Further we note that our data suggest that 

#'(D)/I~(D)--~ 1.000, F'(D)/F(D)--~ 0.18, A'(D)/A(D)-, 1.0 (8.7) 

Thus the behavior of the self-avoiding cycles on strips appears to be, in the 
large, simply related to that for self-avoiding walks. 

9. CONCLUSION 

An exact approach for self-avoiding walks with fixed or free ends, as well 
as self-avoiding cycles, has been developed. The distributions n(x, l) and 
p(x, l), for spans x and lengths l, have been shown to be asymptotically 
Gaussian for pseudo-one-dimensional systems. Numerically exact results 
have been given for a number of systems, particularly the narrower strips. 

The scaling theory arguments, a few exact results, and numerical evi- 
dence all referred to in Section 8 suggest how the distributions vary with 
strip width D. Further numerical evidence for wider strips would be of use 
in clarifying this picture. Such a picture would not only be of interest in itself, 
but also by scaling up to D ~ l 3/4 information about distributions on a full 
two-dimensional lattice might be obtained. The transfer matrices for tubes 
appear to become large rather rapidly, as a function of tube diameter. Thus 
a parallel program concerning distributions in tubes might most readily be 
implemented if a Monte Carlo procedure for finding the maximum eigenvalue 
of the (nonnegative) transfer matrices T, were developed. 

APPENDIX  A. THE N U M B E R  OF C O L U M N  
STATES FOR A STRIP 

The. figures of Section 2 labeling column states for a strip of width D 
are similar to the drawing s representing valence-bond spin pairings of elec- 
trons (see, e.g., Ref. 19). Indeed these column state drawings are in one-to- 
one correspondence with Rumer's linearly independent covalent doublet 
valence-bond states involving an odd number of  electrons assigned to a subset 
of D independent spin-free orbitals. The number of such valence-bond states 
when a given set of 2m + 1 spin-free orbitals is occupied is well known to be 

f ( 1 / 2 , Z r a + l )  _ _  (2m + 1)! 2 (A1) 
m! (m + 2)! 
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and the number of  such sets of 2m + 1 spin-free orbitals is the binomial 

D ) Hence the number of  column is coefficient 2m + 1 " states 

[~-  1)/2] D! 2 

n~ = ~ (D - 2m - 1)!m~ (m + 2)! (A2) 
m = O  

where [A] denotes the greatest integer not exceeding A. By a similar argument 
involving singlet valence-bond states the case of  self-avoiding cycles on a strip 
may also be treated; in this case the number of column states is 

[D/2] D ! 
rtD'= Z (D - 2m)! m! (m + 1)! (A3) 

m = l  

Utilizing these formulas, one obtains, for the narrower strips 

nD =-2, 5, 12, 30, 76, 196, 512, 1332, 3610 

riD'= 1, 3, 8, 20, 50, 126, 322, 834, 2187 (A4) 

D = 2 , 3 ,  4, 5, 6, 7, 8, 9, 10 

Hence numerical results through at least D = 7 are feasible by machine. 
Taking into account the reflection symmetry of  strips, the T t matrix can be 
advantageously blocked into two approximately equal pieces (in fact, for the 
case of a walk and D even, the two pieces are each exactly no~2 by n~/2, while 
for the case of a cycle and D odd, the two pieces are exactly n'D/2 by 
n'D/2). Further, since the fraction of nonzero matrix elements in Tt 
for walks is found to be 0.600, 0.417, 0.274, and 0.180 for D = 3, 4, 5, and 6, 
it appears that these matrices may be rather sparse for larger D. Then, utilizing 
special techniques for sparse matrices, strips through widths of  about D = 9 
might be treated. 

APPENDIX  B. INEQUALITIES ON EIGENVALUES 

In this appendix we establish some relations among the maximum eigen- 
values 2t(D ) and 2/(D) for strips of  various widths D. The generating functions 
of (2.8) and (6.3) are written, with their width dependence explicitly indicated, 

D D 

Gx(I, D) = ~ t ~(w), Gx'(t, D) = ~ t l(c) (B1) 
w c 

Further, we shall presume that 0 ~< t ~< 1. Here the w sum is over fixed-end 
walks with a horizontal span of x and a length of  l(w), while the c sum is over 
cycles with a span o fx  and l(c) steps. Now two fixed-end walks w, and w b, each 
of the same span x but on strips of  widths D a and D b, may be combined 
together to give a single self-avoiding cycle cab ofspan x + 2 on a strip of  width 
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D, + D b as follows: first, place the horizontal strips one above the other with 
Wa directly over Wb; second, extend the beginning of each walk one step to 
the left and the ending of each one step to the right; and third, join these 
new beginnings by a series of  vertical steps and similarly join the new endings. 
This resulting cycle Cab has a length greater than the sum of the walk lengths 
for wa and %;  however, 

l(cab ) <~ l(wa) + l(wb) + 2(D a + D b + 1) (B2) 

so that 

t ~(C~ >~ t ~(w") + l(Wb) + 2(D, + D b + 1) (B3) 

Then, also noting that each distinct pair of  walks gives a distinct cycle Cab, 
we have 

t2(D~ Da)Gx(t, Db) <~ ~ t z(C~ <~ G'x+z(t, Da + Db) (B4) 
Cab 

Now these generating functions approach their asymptotic forms to within a 
factor approaching unity as x ~ oo. Thus factors close to 1 (and satisfying 
fa < 1,fb < 1 , f >  1) can be found such that 

Gx(t, D=) > faa,(Da){2,(D,)} ~ 

G~(t, Oh) > fba,(Db){2t(Db)} ~ (B5) 

6x'(t, D a + Oh) <fat'(D, + Db){2/(D a + Db)} ~ 

for x sufficiently large, say x > xf .  Then 

{2,(Da)2b(Db) }~ t-2(~.+m+x) a/(Da + Db) f 
~D--. ; Db) <~ a,(Do)at(Db) faro 

x {2t'(O . + Db)} 2, x > xf (B6) 

But the ratio of  2's raised to the xth power must be no greater than 1, for 
otherwise a sufficiently large power x could be found such that the left-hand 
side of  (B6) would exceed the x-independent right-hand side. Therefore 

2,(Da)2,(Db) <~ 2 t ' (D  a + Db) (B7) 

which is one of the desired relations. 
A second relation is obtained if we note that a walk w, and a cycle cb, 

each with equal spans x but on strips of  widths D a and Db, may be combined to 
give a single walk W,b on a strip of  width D a + Db. The combining process is as 
follows: first, place the walk directly above the cycle; second, delete a vertical 
step at the left extreme of the cycle and replace it by two horizontal steps each 
extending to the left f rom the pair of  sites between which the vertical step was 
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removed; third, extend the left end of the walk one step to the left; and fourth, 
join the new left end of the walk on the upper strip with the upper left end on 
the lower strip, by adding a series of  vertical bonds. Following a procedure 
similar to that which led to (B7), we find 

)~t(Da)2,'(Db) < ).t(Da + Db) (B8) 

Our third relation uses a process where cycles c a and c b of  the same span 
on strips of  widths D a and D b are combined to give a single cycle on a strip of  
width D a + D b. In this process two vertical bonds, one each from the left 
extremes of the cycles c a and c b are removed, to give at this intermediate stage 
two walks; the top and bot tom ends are extended two steps to the left and 
joined together by a sequence of vertical bonds, while the two central ends 
are extended one step to the left and joined together. This process ultimately 
leads to 

)tt'(Oa)2t'(Db) <~ 2t'(D a + Db), 0 < t ~< 1 (B9) 

Clearly (B7)-(B9) are provable not only for rather general strips, but for 
cylinders and tubes as well. 

A final type of relation considered in this appendix concerns bounds for 
Gx(1, D) and Gx'(1, D), the numbers of  walks and cycles with span x. Letting z 
be the maximum coordination number of  a site, we see that there are no more 
than z(z - 1)/2 ways in which two different links attached to a site can be 
occupied. Further, the number  of  ways in which zero or two occupied links 
can be independently assigned to each site within a span of x is 

[1 + l z (z  - 1)] x9 -= ~xD (B10) 

But to generate a walk or cycle the assignment for each site is not independent, 
so that 

Gx(1, D) < ~,~D, Gx'(1, D) <<. ~xo (Bl l )  

Finally considering the large-x behavior of  these generating functions, we are 
led to 

2,(0) ~< 2,(D) ~< {D, 2,'(D) ~< 21'(D ) ~< {D (B12) 

Although these rather crude bounds of (B12) can rather easily be improved 
upon, it is sufficient for our present purposes that ~ is simply independent 
of  the strip width D. 

A P P E N D I X  C. T H E O R E M S  FOR THE D--* ~ LIMIT 

In this appendix we use the various bounds of (B7)=(B9) and (B12) to 
establish some theorems concerning changes with strip width D. Throughout  
the discussion here we presume that 0 ~< t ~< 1. 
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First we utilize (B9) and (BI2) to obtain 

ln[r >1 0 
(c1) 

ln[~D~ ] + ln[r ] >1 ln[~D~ a + Db)] 

Thus ln[r satisfies the conditions of being a nonnegative subadditive 
function of  D (see, e.g., Ref. 20), and for such functions it is well known that 
the limit 

1 1  n r  (C2) 
limbo D 2t'(D ) 

exists. Hence the limit 

! 
lim ~ In 27'(D ) =mt  (C3) 

D ~ oo 

also exists. 
Now utilizing (BS), then (B7), we obtain 

2t(D a + D b + 1) ~> 27(Da)2,'(D b + 1) ~> 27(D,,)27(Db)27(1 ) (C4) 

In addition, noting 2,(1) = t and using (B12), we obtain 

~-1 ~o-~ ~b-~ ~o+~b-2 
l n ~ > 0 ,  l n ~ + l n ~ > l n t 2 t ( D , + D b + l )  (C5) 

so that ln[r + 1)] is a nonnegative subadditive function of D. Hence 
the limit 

lim 1 In CD (C6) 
o-~ o~ D t27(D + 1) 

exists, which in turn implies that the limit 

lim --1 In 27(D ) ~- ~o t (C7) 
D ~ ( x )  O 

exists, too. 
Next let us note that (B7), with D, = 1 and D b = D, may be written as 

In t In 27(D) In 27'(D + 1) 
+ ~< (c8) 

D D D 

Hence, taking the limit of large D yields co, ~< cot'. But similarly considering 
(B8) with D, = 1 and D b = D leads us to 097' ~< cot. Thus 

co7' = co7 (C9)  

That co t and o) 7' take the same value, even at t = 1/~c(~) or t = 1/x '(~),  
suggests that x(D) and ~:'(D) might both approach the same limit for large D. 



Asymptotic Distributions for Self-Avoiding Walks 585 

To show that this is in fact the/case, we first note that since{to(D)} z essentially 
counts walks of  length l, x(D) must monotonically increase as D increases and 
must be bounded by the coordination number  z. Thus the limit x ( ~ )  exists, 
and similarly the limit x ' ( ~ )  exists. Now taking t = 1 /x (~)  and taking the 
limit of  large D = D a = D b in Eqs. (B7) and (B8) leads to 1 ~< 2~/~(o~)(~) and 
2~/~(oo)(oo) ~< 1, respectively. Thus 2~/~(oo)(Oo) = 1, which implies 

~'(oo) -- ~(oo) (C10) 

This result is similar to that of  Hammersly,  (1 s) although the present result 
applies on a variety of  types of  lattices and is established in a rather different 
manner.  In addition, the connective constants K(oo) and x'(oo) technically 
differ from Hammersly ' s  in that the limits as strip width D ---> oo and length 
l ~ oo are taken in the opposite order. 

The existence of  the limits for cot and co t , along with their equality and 
(C 10) constitute the major  results of  this appendix. These results suggest that 
2,(D) and 2,'(D) behave similarly for large D, but in fact the similarity is 
stronger than these results indicate. For, suppose 

2t(D) ~ cD~'oo, s~, 2t'(D ) ,,~ c'D~;cot o (C11) 

Then (C7) and (C8) with D a = 1 and D b = D lead to 

- -  - -  c o  r ( C 1 2 )  z ) co,, Z c, ' 

Considering the behavior of  these equations for large D, we then find 7, - 
7,' ~< 0 and ~,' - 7, ~< 0, so that 

7, -- 7/ (C13) 

Thus the behavior of  2~(D) and 2/(D) should converge together rather rapidly 
as D increases. This then further suggests that their derivatives with respect to 
t should behave similarly for large D, and hence also #(D) and #'(D) as well as 
v(D) and v'(D). 
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